

Science

Year 8 Knowledge Organisers

Uses of

Carbohydrates Bread, potatoes, pasta

	8A – Food and Nutrition	Uses of Fats	Another source of energy that is stored in your body. Some is stored under the skin to insulate the body. Dairy products, fried food
~	1 Nutrionto	Maintaining	The amount of fuel you use needs to balanced by the
	1. Nutrients	Mass	
Diet	The food that you eat- provides the raw materials your body needs for energy.	Kilojoules (kJ)	amount you eat. The units for measuring the energy in food.
Nutrianto	Food substances that provide the raw materials-	Respiration	The process that releases energy from food.
Nutrients	carbohydrates, fats, proteins, vitamins, minerals	Energy Needs	now active you are.
Carbohydrates	Starch and sugars		Make new cells allowing us
Fats	Liquid fats are oils. Fats and oils are called lipids.	Uses of Proteins	to grow and repair our bodies.
	Made of plant cell walls- not used by the body. Helps food		Meat, fish, cheese, beans, milk
Fibre	move through the intestines and stops them getting blocked.	Uses of Vitamins and Minerals	Used in small amounts to maintain health.
lloos of	 a lubricant dissolves substances to be 	Vitamin A	Needed for healthy skin and eyes.
Uses of Water	carried around body ●fills up cells, holding shape	Vitamin C	Helps cells in tissues stick together properly.
	 sweat to cool you down 	Calcium	Needed to make bones.
Food Labels	Show the amounts of	Iron	Makes red blood cells.
FOOD Labels	different nutrients in food.	2	. Balanced Diets
Starsh Food	Add 2 drops of iodine. If it	Balanced	
Starch Food	turns blue-black starch is		Eating a range of foods in the
Test	present.	Diets	right amounts.
	Add 5 drops of biuret	Malnutrition	Having too much / too little
Protein Food	solution. If it turns purple	– <i>(</i>) ·	of a nutrient in your diet.
Test	protein is present.	Deficiency	Caused by lacking certain
	Rub on some white paper	Disease	nutrients for a long time.
Fat Food Test	and hold up to the light. fats will leave a greasy mark	Kwashiorkor	Lack of protein causing a 'po belly'.
		Night	Lack of vitamin A.
2.	Uses of Nutrients	Blindness	
Uses of	The body's main source of		Lack of vitamin C causing
0303 01		Sources	nainful inints and blooding

Scurvy

painful joints and bleeding

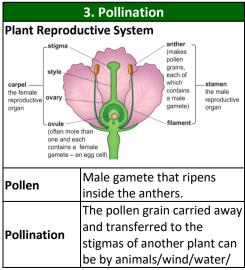
gums.

	Lack of calcium / vitamin D
Rickets	causing bones not to form
	properly.
Anaemia	Lack of iron causing tiredness
Andennia	and shortness of breath.
Starvation	Lacking nearly all nutrients
Starvation	needed.
	Caused by eating food
Obesity	containing more energy than
	you need.
Heart Attack	Fat clogs arteries so little
	blood reaches the heart.
Reference	How much of each nutrient
Intakes	should be eaten in a day.
	4. Digestion
	Turning large insoluble
Digestion	molecules into small soluble
	ones.
Digestive Syst	tem

	ones.
gestive Syst	em
Salivary Gland	Desophagus
Liver	Stomach
Gall Bladder	Pancreas
Large Intestine	Rectum

Mouth	Teeth grind food and saliva helps digest food.
Gullet	(oesophagus / food pipe) Muscles contract pushing the food down.
Stomach	Food churned with acid.
Small Intestine	More digestive juices added- small digested molecules absorbed into body.
Large Intestine	Water is removed from undigested food- faeces formed.
Rectum	Stores faeces

Anus	Faeces pushed out body-
Allus	egestion.
Gut Bacteria	Microorganisms needed to
Gut Bacteria	help digest food.
	Substances that speed up
Ennum er	the breaking down of large
Enzymes	molecules- biological
	catalysts.


	5. Absorption
Digesting Starch	enzyme starch molecule
Blood	Digested nutrients dissolve in the blood plasma and are carried around the body to cells.
Diffusion	Movement of particles from an area of high concentration to low concentration.
Small Intestine Adaptations.	Has lots of tiny finger-shaped villi to increase surface area. Each villus has a folded top that forms microvilli. Villi walls are one cell thick for easier diffusion.
Alcohol	Causes fewer digestive enzymes to be released and can damage villi.

	8B - Plants and their Reproduction	Inher Varia Game Zygot
1. Classif	ication and Biodiversity	
Classification	Sorting organisms into groups based on their characteristics.	Asex Repr
Kingdoms	The five largest groups (each can be split into smaller groups)- animals, fungi, protoctists, prokaryotes and plants. Members of the plant	Runn
Plants	kingdom have cellulose cell walls, are multicellular and make their own food.	
Scientific Name	We give organisms scientific names using the names of the last two groups- the genus and the species.	Tube
Scientific Name	Scientific names are agreed around the world so there is no confusion. Some species	Using Repr
Advantages	have the same common	
Biodiversity	name in different places. The number of difference species in an area.	Plant
Advantages of High Biodiversity	Recover faster from disasters and useful substances can be found (medicines).	carpel – the fema reproduc organ
Extinct	When an organism dies out completely.	s.gun

2. Туре	es of Reproduction
Sexual	Two organisms breeding to
Reproduction	produce offspring.
	The offspring of two
Hybrids	different species- they are
	not fertile.
Fertile	Can produce offspring.

herited Characteristics inherited	
ariation from parents (due to DNA	۹).
ametes Sex cells	
The fertilised egg cell	
ygote formed when the male a	nd
female gamete join.	
Reproduction involving	
sexual only one parent- produce	es
eproduction offspring identical to the	
parent (clones).	
An example of asexual	
reproduction used by	
unners strawberry plants. They	
spread over the ground	
and sprout roots to grow	
new identical plants.	
An example of asexual	
reproduction used by	
potato plants. They are	
ubers underground stems	
(potatoes) that contain a	
store of food that can gro	w
into a new plant.	
sing Asexual	
eproduction	N
plants quickly and cheapl	v

	Brightly coloured petals, nice
Plant	scent and nectar attract
Adaptations	animals (mainly insects). The
for Animal	structure also makes it easier
Pollination	for animals to pick up / leave
Formation	pollen grains.
Plant	Pollen is smooth and light to
Adaptations	float through air. large
for Wind	anthers and stigmas hang
Pollination	outside the flower to catch
	the wind.
Self-	Pollen grains from a plant
Pollination	land on the stigma of the
	same plant.
Cross-	Pollen transferred from one
Pollination	plant to another.
4. Fert	ilisation and Dispersal
	Formed when a pollen grain
Pollen Tube	reaches a stigma of the same
Pollen Tube	species. It grows down to the
	ovule.
	The egg cell and the male
_	gamete from the pollen grain
Fertilisation	join together to form a
	zygote.
	The process by which the cell
Cell Division	splits into two.
	Formed when the cells divide
Embryo	again and again.
	The ovule becomes a seed.
Seed	Inside the seed is the embryo
Seeu	-
	and a food source.
Seed Coat	Hart outer coating of seed to
	protect it.
Germinate	The seed starts to grow.
	The ovary swells up and
Fruit	forms the fruit around the
	seed.
Seed	The spreading of seeds away
Dispersal	from the parent plant.

	1	
Attracting	Fru	uits are fleshy, soft, juicy
Animals	an	d taste good to attract
Allinais	an	imals for seed dispersal.
Frankad	Se	eds are passed out by
Egested	an	imals in their faeces.
	Wi	nd, water and explosions-
Other Seed	us	eful so that new plants
Dispersal	are	en't in competition with
Methods	the	e parent plant.
E Com		nation and Crowth
5. Ger	mi	nation and Growth
Resources		What a plant needs to
		grow/germinate.
Respiration		The process of releasing
Respiration		-
Respiration		energy from glucose.
Respiration Respiration V	Voi	energy from glucose.
Respiration V		energy from glucose.
Respiration V glucose + oxy		energy from glucose. d Equation
Respiration V		energy from glucose. d Equation → carbon dioxide + water
Respiration V glucose + oxy Dormant	/ger	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still
Respiration V glucose + oxy	/ger	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed.
Respiration V glucose + oxy Dormant Photosynthes	ger sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use
Respiration V glucose + oxy Dormant Photosynthes Photosynthes	sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation
Respiration V glucose + oxy Dormant Photosynthes	sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation ar → glucose + oxygen
Respiration V glucose + oxy Dormant Photosynthes carbon dioxide +	sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation
Respiration V glucose + oxy Dormant Photosynthes Photosynthes	sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation ar → glucose + oxygen
Respiration V glucose + oxy Dormant Photosynthes carbon dioxide +	sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation ar → glucose + oxygen Glucose is converted to starch to store it. Traps light energy
Respiration V glucose + oxy Dormant Photosynthes carbon dioxide +	sis	energy from glucose. d Equation \rightarrow carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation ar \rightarrow glucose + oxygen Glucose is converted to starch to store it.
Respiration V glucose + oxy Dormant Photosynthes carbon dioxide + Starch	sis	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation ar → glucose + oxygen Glucose is converted to starch to store it. Traps light energy
Respiration V glucose + oxy Dormant Photosynthes carbon dioxide + Starch	vger sis sis ' wate	energy from glucose. d Equation → carbon dioxide + water Slow life processes but still alive- such as in a seed. A process that plants use to make their own food. Word Equation ar glucose + oxygen Glucose is converted to starch to store it. Traps light energy needed for

Breathing

8C - Breathing
and Respiration

1. A	erobic Respiration	
	(1627-1691)	
Robert Boyle	placed a burning candle in a	Inhalation
	jar and sucked out all the air-	breathing in
	the candle went out.	
	Repeated with a mouse and	
-	the mouse died.	
	(1641-1679)	
	did experiments to discover	Mucus
Joh Mayow	that only a certain part of	
John Wayow	the air was needed to keep	Cilia
	candle burning and mouse	
	alive.	
Joseph	(1733-1804) (1743-1794)	Gas
Priestly &	Showed that oxygen was the	Exchange
Antoine	part of air needed for the	
Lavoisier	candle to burn and mouse to	Diffusion
Lavoisiei	live- makes up 21% of air.	Alveoli
Aerobic	Using oxygen to release	
Respiration	energy from glucose.	Adaptation
Aerobic Resp	iration Word Equation	of Alveoli
glucose + ox	ygen \rightarrow carbon dioxide + water	
	The word equation for	
Combustion	combustion (burning) of	Red Blood
combustion	glucose is the same as above	Cells
	but occurs in a different way.	Haamaglah
	The starting substances-	Haemoglob
Reactants	written on left of word	
	equation.	Arteries
Products	The new substances made-	
	written on right of word	
	equation.	
		Capillaries
2. Ga	as Exchange System	
Breathing	Muscle movement allowing	

the lungs to expand/contract.

Ventilation	Movement of air into / out of
ventiation	the lungs.
	Organ below the lungs that
Diaphragm	contracts / relaxes changing
	the size of the lungs.
Inhalation	Pressure in the lungs is reduced, so atmospheric pressure pushes air in.
breathing in	The muscles in the diaphragm contract, moving it downwards.
	Sticky liquid that traps dirt,
Mucus	dust and microorganisms.
	Tiny hairs on cells that sweep
Cilia	mucus from the lungs into
	the gullet to be swallowed.
	The swapping of gases
Gas	between the lungs and the
Exchange	blood.
Diffusion	Movement of particles from a high concentration to low.
Alveoli	Little pockets on the lungs.
	They increase the surface
Adaptations	area for faster diffusion.
of Alveoli	The walls are one cell thick
of Alveon	for faster diffusion.
3	. Getting Oxygen
Red Blood	Take in oxygen when it gets
Cells	into the blood.
Haemoglobin	Where the oxygen binds to in
	Blood vessels that carry

blood from the heart to the

Tiny blood vessels that the arteries divide into. oxygen

leaves red blood cells here

and dissolves into the

body.

plasma.

	Liquid part of the blood that	Cham
Plasma	leaks out of the capillaries	Stoma
	into the tissue fluid.	
Tissue Fluid	Carries the oxygen to the	
rissue riula	cells.	
	Carry blood back towards the	Anaei
Veins	heart.	Respi
	Your muscles must release	
	more energy so need more	Anaei
Exercise	oxygen and glucose- your	Gluco
	breathing and heart rates	
	increase.	Energ
	Blood vessels in skin narrow	
Frostbite	to avoid heat loss and less	Anae
FIUSIBILE	blood reaches cell. If the cells	Advar
	die this causes frostbite.	After
	Fatty substances build up	Stren
Heart Attack	inside blood vessels reducing	Exerc
Heart Attack	blood flow causing cells to	
	die.	
	Poisonous gas found in	
Carbon	cigarette smoke- sticks to	EPOC
Monoxide	haemoglobin so red blood	
	cells carry less oxygen.	
	In tobacco smoke- irritates	
Tar	alveoli and causes them to	Effect
ıaı	break apart leading to	ç
	emphysema.	interest
	Tiny tubes in lungs become	Tauco a
Asthma	narrow and fill with mucus	
	meaning less air gets into	C
	and out of the lungs.	
4 Con	nparing Gas Exchange	
4. COI	Turns cloudy in the presence	
Limewater	· · ·	
Undrogen	of carbon dioxide.	
Hydrogen Carbonate	Turns from pink to yellow as carbon dioxide increases and	
Carbonate Indicator		
mulcator	the pH drops.	
	Water flows over feathery	l

strands where oxygen

carbon dioxide out.

diffuses into the blood and

Gills

Stomata	Tiny holes in leaves that allow gas exchange.	
5. Anaerobic Respiration		
	Respiration that occurs in the	
Anaerobic	cytoplasm of cells when	
Respiration	oxygen isn't present during	
	strenuous exercise.	
	spiration Word Equation	
Glucose \rightarrow la	ctic acid	
	Anaerobic respiration	
Energy	releases less energy than	
	aerobic.	
Anaerobic	Allows for a quick, sudden	
Advantages	burst of energy.	
After	Lactic acid enters the blood,	
Strenuous	is carried to the liver and	
Exercise	converted back to glucose.	
	Excess post-exercise oxygen	
	consumption (or oxygen	
	debt). Extra oxygen is needed	
EPOC	after strenuous exercise to	
	replace lost oxygen from	
	blood / muscles and convert	
	lactic acid to glucose.	
Effect of exer	cise on oxygen demand	
	oxygen demand is greater than supply	
Dxygen consumption	_ oxygen supply	
COURT	oxygen supply	
xygen	EPOC	
0	resting level	
perio		
- SVero		

8D - Unicellular Organisms

1 110-001	Jew ew NAulticellulew		inside a host.
1. Unicelli	ular or Multicellular	2.0	Aierosopie Fungi
Cells	The basic unit of life. All	Asexual	Microscopic Fungi
Cells	organisms are made up of cells.		Producing new organisms
	An organism made up of	Reproduction	from one parent only.
Unicellular	one cell.		Type of asexual reproduc
		Budding	used by fungi in which a
	Organisms that are so		small new cell grows out from a parent cell.
wiicroorganisms	small they can only be	Aerobic	
	seen with a microscope.		Glucose + oxygen → carb
Multicellular	An organisms made of	Respiration	dioxide + water
	many cells.	Anaerobic	A type of respiration whic
Diffusion	When particles spread to	Respiration	does not require oxygen.
Diffusion	fill the area that they are		The anaerobic respiration
	in.	Fermentation	microorganisms.
	All living organisms can be		Glucose \rightarrow carbon dioxide
Kingdoms	grouped into one of the		water
	five kingdoms.		The number of a certain
Prokaryotes	Unicellular organisms that	Population	organism found in a certa
-	do not have a nucleus.		area.
	Mainly unicellular	Limiting	Something that stops a
Protoctists	organisms.	Factor	population growing.
	All have a nucleus.		3. Bacteria
	Mainly multicellular		Produced by the anaerobi
Fungi	organisms that do not		respiration of bacteria.
	make their own food and		Glucose \rightarrow lactic acid
	have a nucleus.		A substance that can spee
	Multicellular organisms	Enzymes	up some processes in livir
Plants	that have a nucleus and	Liizyines	organisms.
	make their own food.		Type of asexual reproduct
	Multicellular organisms	Binary	used by bacteria in which
	that have a nucleus, do	Fission	cell splits into two.
Animals	not make their own food		A long molecule that
	and do not have a cell	Chromosomo	contains instructions for
	wall.	Chiomosome	organisms and their cells

	A type of microorganisms
Bacteria	in the prokaryote
	kingdom.
	Not classed as living
Vinuese	organisms because they
Viruses	cannot live without being
	inside a host.

Aicroscopic Fungi
Producing new organisms
from one parent only.
Type of asexual reproduction
used by fungi in which a
small new cell grows out
from a parent cell.
Glucose + oxygen → carbon
dioxide + water
A type of respiration which
does not require oxygen.
The anaerobic respiration of
microorganisms.
Glucose \rightarrow carbon dioxide +
water
The number of a certain
organism found in a certain
area.
Something that stops a
population growing.
2 Dactoria
3. Bacteria
Produced by the anaerobic
respiration of bacteria.
$Glucose \rightarrow lactic acid$
A substance that can speed
up some processes in living
organisms.

Type of asexual reproduction

used by bacteria in which a

organisms and their cells.

	A tail-like structure that
-	otates, allowing a unicellular
	organism to move.
Statement	A series of descriptive
Kev	statements used to work out
\	what something is.
	4. Protoctists
	A type of protoctist that
Algae	uses photosynthesis.
	Carbon dioxide + water \rightarrow
Photosynthesis	s glucose + oxygen
	Found in plant and some
	protoctist cells- the site of
Chloroplast	food production through
	photosynthesis.
	The green substance inside
Chlorophyll	chloroplasts that absorbs
	light.
	Organisms that are able to
Duoduosiis	make their own food-
Producers	always the start of a food
	chain.
Feed Chains	A way of showing what
Food Chains	eats what in an ecosystem.
Energy	Represented by an arrow
Transfer	on a food chain diagram.
	A way of showing the
Pyramids of Numbers	numbers of different
Numbers	organisms in a food chain.
	Can build up and become
Poison	more concentrated as you
	move along a food chain.
5. Deco	omposers & Carbon
	All the physical
Ecosystem	environmental factors and
	all the organisms that are
	found in a habitat.
	Organisms that feed on
Decomposers	dead organisms or animal
	waste which allows

substances to be recycled.

Decay	The breakdown of dead
Decay	organisms or animal waste.
Soluble	A substance that can
Soluple	dissolved in a liquid.
	Shows how carbon
Carbon Cycle	compounds are recycled in
	an ecosystem.
Combustion	Burning fuels and releasing
compustion	carbon dioxide into the air.
	Transfers carbon
Feeding	compounds stored in plants
	to the animals eating them.
Carbobydrates	A nutrient used as the main
Carbohydrates	source of energy.
Proteins	A nutrient used for growth
Proteins	and repair.
	A nutrient used for storing
Fats	energy and as a thermal
	insulator.

Compound formed by oxidation.

Oxide

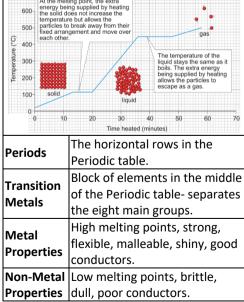
LET ALL OUR BRIGHT COLOURS SHINE			Formed when metals react		Flam
	8E –	Metal	with oxygen.	< ⁽¹⁾	Thes
	_	Oxides	Metal + oxygen \rightarrow metal		easil
	Combustion		oxide		Oxid
			Mass is never gained or lost	<77>	Thes
			in a chemical reaction. The		oxyg
1	. Burning Fuels	Conservation	atoms in reactants just	Fire	Wor
-		of Mass	rearrange to form the		stop
	A chemical substance from		products, no new atoms are	Extinguishers	the f
Fuel	which stored energy can be		made and none disappear.		Wate
	transferred usefully to make		Forms a white powder zinc		oil ai
	things happen.	Heating Zinc	oxide. The mass will appear	Oil Fire	the f
	Used in hydrogen-powered	in Air	to increase because the zinc		foam
Fuel Cell	vehicles, releasing energy	in Air	has combined with the		keep
	from hydrogen.		oxygen in air.		Wate
Fuel Cell Word			If the product is a gas it may		so yo
Hydrogen + ox	$xygen \rightarrow water$	Gas Products	escape and make it seem like		shoc
Reactants	The starting substances- on		the mass has decreased.	Electrical Fire	elect
	left of word equation.		A substance scientists used		or ca
Products	The new substances made-	Dhlasistan	to think explained why things		extin
	on right of word equation.	Philogiston	burned that was then proven		
	Burning, usually in air. The		not to exist.		4. Air
	reaction gives out energy				Carbo
Combustion	which is transferred to the		3. Fire Safety	Combustion	-
	surroundings by heating or		A reaction that releases		Not en
	light.	Exothermic	energy that we can feel as	Combustion	carbor
	Fuels formed from living		heat- combustion		 carb
Fossil Fuels	organisms that died millions	Thermometer	Used to measure a change in	Products of	glob
	of years ago- petrol, diesel	mermometer	the temperature.	Incomplete	 carb
	Only contain carbon and		Three factors allow	Combustion	pois
Hydrocarbons	hydrogen atoms- <i>petrol,</i>		combustion to	Compustion	• soot
	diesel		occur.		trigg
Combustion of	The carbon and hydrogen	Fire Triangle	S A TA		Small a
	atoms react with oxygen.	_		Impurities	substa
U Hydrocarbons	The carbon reacts to form			Sulfur	Forme
nyulocarbons	carbon dioxide.		FUEL		have a
Carbon	Carbon dioxide will turn	Putting Out a	You must remove at least		Forme
Dioxide	limewater cloudy.	Fire	one of the three factors.	Nitrogen	tempe
	2 Ovidation		Explosive		and ox
	2. Oxidation		Heating may cause an		Somet
Oxidation	Reacting with oxygen.		explosion.		living t
	Compound formed by	-			

	Flammable These substances catch fire easily.	Cataly Conve
	Oxidising These substances release oxygen.	
Fire Extinguishers	Work by cooling a fire or stopping oxygen getting to	Acid R
Oil Fire	Water will sink through the oil and turn to steam making the fire spread out. Use foam or a fire blanket to	Contro Acid R
Electrical Fire	keep oxygen away. Water conducts electricity so you may get a serious shock. Turn off the electricity and use a powder or carbon dioxide extinguisher.	Green Gases
	4. Air Pollution	Green Effect
Complete	Carbon burns in plenty of air	Enect
	only forming carbon dioxide.	
	Not enough oxygen for all the	Earth'
-	carbon to react with.	Tempe
	 carbon dioxide- linked to 	Over T
Products of Incomplete Combustion	global warmingcarbon monoxide- poisonous gas	Global Warm
	 soot- damage lungs and 	
Impurities	trigger asthma Small amounts of other substances in fuels.	Climat Chang
Sulfur	Formed when hydrocarbons	
Dioxide	have a sulfur impurity.	
Nitrogen Oxide	Formed by high engine temperatures causing nitrogen and oxygen in air to react.	Eviden
	Something that can harm	

F	ound in cars to react carbon
atalytic n	nonoxide with more oxygen
c onverter fo	orming carbon dioxide. Also
b	reaks down nitrogen oxides.
S	ulfur dioxide and nitrogen
cid Rain	xides rise into the air and
d	issolve in water vapour. The
ra	ain is now more acidic.
Ν	leutralisation reactions used
controlling	o remove acidic gases from
cid Rain	himney smoke. Acidic soil
	water can be neutralised by
а	dding calcium carbonate.

5. Global Warming		
Greenhouse	Trap energy from the Sun in	
Gases	the atmosphere <i>e.g. carbon</i>	
Gases	dioxide	
	Energy trapped by	
Greenhouse	greenhouse gases is	
Effect	transferred back to the	
Effect	Earth's surface causing it to	
	warm up.	
Earth's	The temperature of the Earth	
Temperature	has fluctuated over time it is	
Over Time	rising rapidly now though.	
	Increase in global	
Global	temperature due to more	
Warming	greenhouse gases in the air	
	and the greenhouse effect.	
	Resulting from global	
Climate	warming- changes to	
Change	weather patterns, more	
	storms, flood, droughts, etc.	
	There is now lots of evidence	
Evidence	for global warming. Average	
Evidence	temperatures are increasing	
	and ice caps are melting.	

8F - The Periodic Table


1. C	alton's Atomic Model
latter	All things are made of matter.
ohn	(1766-1844)
alton	An English chemist.
	 all matter is made up of
	atoms.
	 atoms in an element are
	identical. Each element has its
	own type of atom.
lton's	 atoms cannot be destroyed or
omic	created.
eory	 In compounds each atom is
	always joined to a fixed
	number of other atoms.
	 atoms rearrange during
	chemical reactions to form
	new substances.
oms	Small particles that all matter is
oms	made up of.
ment	A substance made up of one
ment	kind of atom.
	Contains atoms of two or more
mpound	different elements chemically
	joined together.
ysical	The properties that describe a
operties	substance on its own.
operties	(colour, strength, density, etc.)
ysical	A change in which no new
anges	substances are formed.
	Letters used to represent the
mbols	elements.
	e.g. C represents Carbon

2. Chemical PropertiesChemicalHow a substance reacts withPropertiesother substances.

	An idea about how something works that can be tested using
	experiments.
)	What you think will happen in
Prediction	experiment and why.
	The mass of the products of a
Conserving	reaction will be the same as the
Mass	mass of the reactants.
	The combination of symbols
	and numbers that shows how
Chemical	many atoms of different
ormulae	element are in a particular
	molecule.
	e.g. water is H₂O
	Comparison of the proportion
Ratio	of two quantities <i>e.g. in water</i>
งสมบ	there are 2 hydrogens for every
	oxygen, the ratio is 2:1
2	Mendeleev's Table
	(1780-1849)
	German chemist who
ohann	highlighted some groups of 3
Döbereiner	
Döbereiner	
Döbereiner	elements had similar physical /
Döbereiner	elements had similar physical / chemical properties.
	elements had similar physical / chemical properties. (1837-1898)
ohn	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered
	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms
ohn	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element
ohn	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties.
ohn	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907)
ohn Newlands	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published
ohn Newlands Dmitri	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by
ohn Newlands	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by
ohn Newlands Dmitri	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their
ohn Newlands Dmitri	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of
ohn Newlands Dmitri	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties.
ohn Newlands Omitri Vlendeleev	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties. Mendeleev left gaps in his
ohn Newlands Dmitri	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties.
ohn Newlands Omitri Mendeleev	elements had similar physical / chemical properties. (1837-1898) English chemist who ordered elements by the mass of atoms and noticed every 8 th element has similar properties. (1834-1907) Russian chemist who published the first periodic table by ordering elements by increasing masses of their atoms forming groups of similar properties. Mendeleev left gaps in his table for undiscovered

	A vertical column in the
Group	Periodic Table- contains
	elements with similar
	properties.
Alkali	Group 1
Alkali Metals	Very reactive metals, they even
	react with water.
	Group 7
Halogens	React with most metals to form
	solid compounds.
Noble	Group 0
Gases	Unreactive gases

4. Physical Trends When a substance changes Melting Point from a solid into a liquid Boiling When a substance changes Point from a liquid into a gas. When a substance changes Freezing from a liquid into a solid- the Point same as the melting point. Heating Substances How temperature depends on time (as sulfur is heated) At the melting point, the extra

5. Chemical Trends		
	Alkali metals produce metal	
Alkali	hydroxides and hydrogen	
Metals &	when reacting with water.	
Water	(sodium + water \rightarrow sodium	
	hydroxide + hydrogen)	
	Alkali metals produce metal	
Alkali	oxides when reacting with	
Metals &	oxygen.	
Oxygen	(lithium + oxygen \rightarrow lithium	
	oxide)	
Reactivity	How quickly / vigorously	
Reactivity	something reacts.	
Alkali Metal	As you move down the group	
Reactivity	the reactivity increases.	
Oxides	Formed when elements	
Oxides	react with oxygen.	
	When we dissolve oxides in	
	water there is a trend in	
0	their pH. Further to the left	
Oxide	of the Periodic table oxides	
Trends	formed are more alkaline.	
	Further to the right they are	
	more acidic.	

8G – Metals and Their Uses

1. Metal Properties		
Physical Properties	The properties that describe a substance on its own. (colour, strength, density, etc.)	
Chemical Properties	How a substance reacts with other substances.	
Properties of Metals	High melting points, strong, flexible, malleable, shiny, good conductors.	
Copper	Used in electrical circuits because it is a good conductor of electricity and unreactive. Used in water pipes because it is unreactive, non-poisonous and malleable.	
Aluminium	Used in window frames because it is strong and light.	
Metals & Oxygen	Most metals react with oxygen. Metal + oxygen \rightarrow metal oxide <i>e.g. zinc</i> + oxygen \rightarrow zinc oxide	
Metals & Halogens	Metals react with halogens and other non-metals. e.g. zinc + fluorine \rightarrow zinc fluoride	
Catalysts	Speed up chemical reactions without being permanently changed themselves.	
Catalytic Converter	Found in cars to help convert dangerous gases into harmless ones- often contain platinum, palladium and rhodium.	

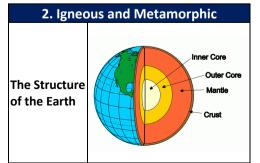
2. Corrosion		
Corrosion	Any reaction with oxygen at the	
	surface of a metal.	
Rusting	The corrosion of iron.	

	•	tion for (
		oxygen –					
Sym	ibol Equ	ation fo	r Corros	sior	n of	Titanium	
Ti +	$O_2 \rightarrow Ti$	O ₂					
		Used to represent the products					
Forn	nula	and read	tants in	n a s	sym	bol	
		equation.					
		Comparison of the proportion					
_		of two quantities $e.g.$ in TiO ₂					
Ratio					-	toms for	
		every tit					
Rusting of		More co					
		corrosio	•		-		
Iron	l	well.	n requ	100	ma		
Rust	ting of I	ron Wor	d Fauat	ion			
	-	en + wate	-			ovido	
11011	1 ONYS	Use a ba				JAIUE	
Prev	enting/					0.014014	
Rust	t	paint/pla		ιο	кее	paway	
		air/wate	r				
	3	. Metal	s and V	Vat	er		
Rea		of Metals					
		Reaction		1			
	Metal	with oxygen in air	Reaction with cold water				
p	ootassium	<u></u>	*				
s	sodium	<u></u>	111				
li	ithium	<u></u>	11				
c	calcium	*	11				
n	magnesium	*	1		<u>A</u>		
а	aluminium	111			ivit		
					ざ		
z	zinc	11	•••		g react		
	zinc ron	\ \ \ \ \	•••		asing react		
ir			•••		ncreasing reactivity		
ir ti	ron	<i>√ √</i>			Increasing react		
ir ti	ron in	<i>J J</i> <i>J</i>	•••		Increasing react		
ir ti le	ron in ead	<i>J J</i> <i>J</i>	•••		Increasing react		
ir ti le n	ron in ead copper	\ \ \ \ \ \	••• ••• X		Increasing react		
ir ti k c n s	ron in ead copper mercury	√√ √ √ √	••• ••• X X		Increasing react		
ir ti le c c n s s g	ron in ead copper nercury silver	J J J O O O	••• ••• × × ×		Increasing react		
ir ti k c c n s s g g p	ron in ead copper mercury silver	√√ √ √ •••• ×	*** *** * * * *		Increasing react		

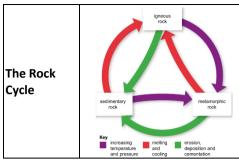
• • • slow or partial reaction

🧹 reacts

X no reaction


son son		v quickly / vigorously		
		nething reacts.		
Reactivity	A list of metals in the order of			
	their reactivity.			
Metals & Water	Metals produce metal hydroxides and hydrogen when reacting with water.			
		lium + water → sodium		
	hydroxide + hydrogen)			
	4. 1	Metals and Acids		
Potassium –		React explosively with dilute		
Lithium		acids.		
Calcium –		React very quickly with		
Zinc		dilute acids.		
Iron – Leac	ł	React slowly with dilute acids.		
Copper –		Do not appear to react with		
Platinum		dilute acids at all.		
Effervesce	nce	The production of a gas. Occurs when metals react with an acid.		
Metals &		Metals react with acids to		
Acids		form hydrogen and a salt.		
	\cid	s Word Equation		
		salt + hydrogen		
		$m + sulfuric acid \rightarrow$		
		lfate + hydrogen		
		The first word in the salt is		
Naming Sa	lts	the metal the second		
-		depends on the acid used.		
Hydrochlo	ric	HCl – forms salts ending in		
Acid		chloride		
Sulfuric Ac	id	H ₂ SO ₄ – forms salts ending in sulfate		
Nitric Acid		HNO₃ – forms salts ending in nitrate		
Obtaining Salts		Mix the acid and the metal. Filter the solution to remove any excess metal. Heat the solution to evaporate water leaving just the solid salt		
		leaving just the solid salt.		

5. I	Pure Metals and Alloys
Pure	Substance made up of one type of atom.
Alloys	Mixtures of metals.
Solder	Lead mixed with tin- lower melting point than lead used for fixing pipes / electrical equipment.
Duralumin	Aluminium mixed with copper and magnesium making it lighter and stronger. Used in aircraft.
Stainless Steel	Iron mixed with carbon, chromium and nickel making it stronger and more resistant to corrosion. Used in cutlery.
Explaining	How Alloys Are Strong
	Interface to the layers. In the different state of the layers cannot side so easily.
Melting / Boiling Points	Melting and boiling points for pure substances are fixed and occur at precise temperatures. Alloys melt and boil over a range of temperatures.


8H – Rocks

1. Rocks and their Uses		
T. I		
Geologist	A scientist who studies rocks	
	and the Earth.	
Rocks	Naturally occurring substances	
	made up of different grains.	
Grains	Made from one or more	
	chemical compounds.	
Minerals	The chemical compounds in	
	rocks- rocks are mixtures of	
	different minerals.	
Texture	The combination of sizes and	
rexture	shapes of grains in a rock.	
	The grains all fit together with	
Interlocking	no gaps. They are hard and do	
Crystals	not wear away easily.	
	Some rocks have rounded	
Rounded	grains with gaps in between.	
Grains	They are not strong and can be	
	worn away more easily.	
	Rounded grain rocks can	
Porous	absorb water because it gets	
	into the gaps.	
Permeable	Water can run through.	
•	A building material made from	
Cement	limestone.	
	A mixture of cement, sand and	
Gravel	gravel.	

	Formed when molten rock
Igneous	cools down
Rocks	e.g. basalt, granite
Magma	Molten rock
	Magma that reaches the
Lava	Earth's surface.
	Formed when molten rock
Small	cools down fast due to less
Crystals	time for particles to become
•	ordered.
	Formed when molten rock
Large	cools down slowly due to
Crystals	more time for a large grid
-	pattern to form.
	Igneous rocks formed from
Extrusive	cooling lava above the
	surface.
	Igneous rocks formed
Intrusive	underground.
	Formed by pressure and
	heat changing other rocks.
Metamorphi	c e.g. Schist, gneiss (both
Rocks	formed from granite) slate
	(from mudstone) and marble
	(from limestone)
	Always made from
Metamorphi	
Rock Texture	may form coloured bands.
2.14	
3. W	eathering and Erosion
	When rocks are broken up by
	ale at a la seconda se seconda seconda se seconda se seconda se se seconda se se seconda se se seconda se se s
Weathering	physical, chemical or
Weathering	biological processes.
Weathering	biological processes. When rocks are broken up by
	biological processes. When rocks are broken up by chemical reactions.
Chemical	biological processes. When rocks are broken up by chemical reactions. <i>e.g. gases in air making</i>
	biological processes. When rocks are broken up by chemical reactions. <i>e.g. gases in air making</i> <i>rainwater slightly acidic which</i>
Chemical	biological processes. When rocks are broken up by chemical reactions. e.g. gases in air making rainwater slightly acidic which then reacts with minerals in
Chemical	biological processes. When rocks are broken up by chemical reactions. e.g. gases in air making rainwater slightly acidic which then reacts with minerals in rock wearing them away.
Chemical Weathering	biological processes. When rocks are broken up by chemical reactions. e.g. gases in air making rainwater slightly acidic which then reacts with minerals in rock wearing them away. When rocks are broken up by
Chemical Weathering Biological	biological processes. When rocks are broken up by chemical reactions. e.g. gases in air making rainwater slightly acidic which then reacts with minerals in rock wearing them away. When rocks are broken up by living organisms.
Chemical Weathering	biological processes. When rocks are broken up by chemical reactions. e.g. gases in air making rainwater slightly acidic which then reacts with minerals in rock wearing them away. When rocks are broken up by

	When rocks are broken up by
	physical processes.
Physical	e.g. changes in temperature
Weathering	causing expansion and
	contraction over time,
	cracking rocks.
Evpanding	Rocks get bigger when they
Expanding	are heated.
Contracting	Rocks get smaller when they
Contracting	are cooled.
F	Water gets into cracks in
Freeze-	rocks, freezes, expands and
Thaw	then forces the crack to get
Action	bigger.
	The movement of loose and
Erosion	weathered rock.
	When rock fragments bump
Abrasion	into each other and are worn
	away.
	Bits of rock and sand in
Sediment	streams or rivers.
	Rivers of ice that move slowly
Glacier	but can transport large pieces
Glacier	of rock.
4. 9	Sedimentary Rocks
	Formed when layers of
Codimontory	sediment build up over time
Sedimentary	followed by compaction then
Rocks	cementation.
	e.g. sandstone, mudstone
	Pressure forces water out
	from the gaps between grains
Compaction	squashing the grains closer
	together.
	Dissolved minerals between
Cementation	the gaps act as a glue and
	'cement' the grains together.
	They are always made from
Sedimentary	rounded grains. Properties
Rock	depend on the type of
- .	
Texture	sediment that forms them.

Cycle

5. N	5. Materials in the Earth			
Native	Metals found as pure elements			
State	in rocks.			
Ores	Rocks that contain enough of a metal / metal compound to be worth mining.			
Extracting Ores	Ores are obtained by mining, then crushed and chemical reactions used to obtain the metal.			
Mining Problems	Damages the environment by destroying habitats and causes pollution.			
Rare Metals	Hard to obtain which makes them expensive.			
Recycling	Using a material again.			
Recycling Advantages	Cuts down on pollution from mining and landfill sites, allows supplies to last longer and requires less energy.			

<mark>81 –</mark>	Fluids

1	. The Particle Model
Charlan - 6	The three forms that a
States of	substance can be in; solid, liquid
Matter	or gas.
Solid	Do not flow, fixed shape, fixed
Properties	volume, cannot be compressed
Liquid	Can flow, no fixed shape, fixed
Properties	volume, cannot be compressed
Gas	Can flow, no fixed shape, no
Properties	fixed volume, can be
	compressed
Particle	Used to explain the different
Theory	properties and observations of
	solids, liquids and gases.
	Fixed arrangement of particles
	held closely together that
Solid	cannot move over each other
Particle	but vibrate.
Properties	
	Held closely together but not in
Liquid	a fixed arrangement and can
Particle	move over each
Properties	other.
rioperties	235 235
	Far apart from each other and free to move about in all
Gas	directions.
Particle	
Properties	• • •
	- • • • • ·
	The movement of particles
Diffusion	spreading out and mixing with
Diffusion	each other without anything
	moving them.

	An erratic movement of small		
Brownian	specks of matter caused by		
Motion	being hit by the moving		
Motion	particles that make up liquids or		
	gases.		
	Materials expand when heated		
Expanding	because the particles vibrate		
	more, taking up more space.		
	Materials contract when cooled		
Contract	because the particles vibrate		
	less and take up less space.		
	The mass of a certain volume of		
Doncity	a material.		
Density	$density = \frac{mass}{volume}$		
	volume		
	2 Changing State		
	2. Changing State Changing from one state of		
Changes of			
State	changes because no new		
JIALE	chemicals are made.		
Melting	Turning from a solid to a		
	liquid- occurs at melting point		
Freezing	Turning from a liquid to a		
	solid- occurs at freezing point		
Condensin	g Turning from a gas into a		
<u> </u>	^b liquid.		
Sublimatio	n Turning from a solid to a gas.		
.	Turning from a liquid into a		
Evaporatio	-		
	of a liquid at any temperature.		
	When evaporation occurs		
Boiling	within a liquid- occurs at the		
	boiling point		
_	A substance made up of a		
Pure	single type of atom or		
	compound.		
Pure	Occurs at a set temperature.		
Substances			
Changing	constant when changing state		
State	as bonds are broken or made.		

	-					
IVIIXTIIRES	Occurs over a range of					
Changing	temperatures as it contains					
State	substances with different					
	melting/boiling points.					
	Contracts as it is cooled up					
	until 4°c and then it expands					
Water	slightly. Ice takes up more					
	space than water and is less					
	dense					
2	Drossuro in Eluido					
	Pressure in Fluids					
Fluids	Liquids and Gases					
	The force of particles hitting					
Pressure	things- comes from all					
	directions in gases and					
	liquids.					
	Pascals (Pa)					
Pressure	One pascal is the a force of					
Units	one newton on every square					
	metre.					
Atmospheric	The pressure of the air-					
Pressure	100,000 Pa					
	Contain air under high					
	pressure because they are					
Tyres	pumped with extra air					
	causing more particles to hit					
	the inside walls.					
	Pressure in fluids increases as					
	you increase temperature					
Temperature	because particles move faster					
	and hit the walls of the					
	container harder.					
	If you compress a gas into a					
Volume	smaller volume the pressure					
Volume	increases because the					
	particles hit the walls more.					
	As you go down the ocean					
	there is more water above					
Pressure	you so pressure increases. As					
From Above	you go up a mountain there					
	is less air above you so					
	pressure decreases.					
L	pressure accreases.					

	4. F	loating and Sinking
Upthrust	The	e force of water pushing
up		wards.
Weight	The	e amount of force with which
weight	U	ivity pulls on a mass.
Water		e density of water is 1 g/cm ³
Floating		omething has a density less
Tiouting		n water it will float in water.
Sinking		omething has a density greater
5111115		n water it will sink in water.
Air		e density of air at sea level is
		ound 0.001 g/cm ³
Hot Air		because the overall density of
Balloons		e balloon is less than the air
	arc	ound it.
		5. Drag
Drea		A resistance force acting on an
Drag		object to slow it down.
Water		Type of drag that occurs in
Resistanc	e	water.
Air		Type of drag that occurs in air.
Resistance		
Friction		Partly causes the drag on a
Thetion		moving object.
Streamlin	ned	Smooth shape to reduce air /
Streamin		water resistance.
Speed		The faster an object is moving,
		the greater the drag.
Balanced		Equal forces acting in opposite
Forces		directions.
Engine		Forward force of an engine
FUSUE		needs to balance the drag.

LET ALL OUR BRIGHT COLOURS SHINE			Material that lets light		2. Reflection		3. Refraction
	8J - Light	Translucent	through but scatters it. You	Plane	A smooth, flat mirror.		The change in direction when
FM		Translaterit	cannot see things clearly	mirror		Refraction	light goes from one
			through translucent materials.	Ray box	A piece of equipment that	Refraction	transparent material to
			Material that does not let	Ray DOX	produces a narrow beam of light.		another.
1.	Light on the move	Opaque	light through. It is not possible	Pav	A method of investigating what	Interface	The boundary between two
	A completely empty space,	opuque	to see through an opaque	Ray tracing	happens to light by marking the	interface	materials.
Vacillim	containing no particles.		substance.	tracing	path of a light ray.		A curved piece of glass or
	All things are made of matter.		Scattering occurs when light	Ray	A diagram that represents the	Lens	other transparent material
	There are three states of		or other energy waves pass	diagram	path of light using arrows.	Lens	that can change the direction
	matter: solid, liquid, gas.		through an imperfect medium		An imaginary line at right angles		of rays of light.
	A wave where the particles	Scattered	(such as air filled with	Normal	to the surface of a mirror or	Converging	A lens that makes rays of
	vibrate in the same direction		particles of some sort) and are	Normai	other object where a ray of light	lens	light come together.
	as the wave is travelling.		deflected from a straight		hits it.	Angle of	The angle between the
wave	longitudinal		path.	Incident	A ray of light going towards the	refraction	normal and a ray of light that
		Reflected	A ray of light bouncing off a	ray	mirror or other object.	renaction	has been refracted.
		ray	mirror.	Reflected	A ray of light bouncing off a		The place where parallel rays
	A wave where the vibrations	Source	Where a sound wave or other	ray	mirror.	Focal point	of light are brought together
	are at right angles to the		wave begins.	Angle of	The angle between an incoming		by a converging lens.
	direction the wave is		A picture that forms in a	incidence	light ray and the normal.		The distance between the
Transverse	travelling.		mirror or on a screen, or is	A	The angle between the normal	Focal length	centre of the lens and the
wave	transverse	Image	made by a lens. You see an	Angle of	and the ray of light leaving a		focal point.
l			image when looking down	reflection	mirror.		
	\checkmark		a microscope.		When light is reflected evenly, so		
i	A narrow beam of light, or an		A piece of apparatus that		that all reflected light goes off in		
l	arrow on a diagram	Pinhole	forms an image of an object		the same direction. Mirrors		
Ray	representing the path of light	camera	on a screen when light rays	Creasular	produce specular reflection.		
-	and the direction in which it is	camera	travel through a tiny hole in	Specular	· · · · × / /		
	travelling.		the front	reflection	normal		
	A material that light can travel		A place where light cannot get		renected ray		
	through without scattering.	Shadow	to, because an opaque object		mirror		
	(Note: transparent substances		is blocking the light.		B specular reflection		
	may be coloured or				Reflection from a rough surface,		
	colourless.)				where the reflected light is		
	To pass through a substance.				scattered in all directions.		
	To bounce off a surface			Diffuse			
	instead of passing through it			reflection			
	or being absorbed.						
	'To soak up' or 'to take in'						
Absorb	'To soak up' or 'to take in'.			Law of	The angle of incidence is equal to		

	4. Cameras and eyes		
Digital	A camera that uses electronics		
camera	to record an image.		
	An instrument that detects		
Company	something. In a digital camera,		
Sensor	the sensors detect light and		
	change it to electrical signals.		
Memory	Part of a digital camera that		
card	stores the images.		
	A hole in a camera that controls		
Aperture	how much light goes to the		
	sensor.		
	A device that shields and		
Chutton	protects the sensor in a digital		
Shutter	camera. It opens when the		
	picture is taken.		
	Lens Vitreous humor		
	Pupil		
	Cornea Macula		
Human	Fovea		
eye			
-			
	Iris Optic nerve		
	Sclera Retina		
	Statu		
	The part at the back of the eye		
Retina	that changes energy transferred		
	by light into nerve impulses.		
	The hole in the front of the eye		
Pupil	that light can pass through.		
	A cell in the retina that detects		
Rod cell	low levels of light. It cannot		
	detect different colours.		
	A cell in the retina that detects		
Cone cell	different colours of light.		
	The transparent front part of		
Cornea	the eye, which covers the iris		
	and pupil.		
Iris	The coloured part of the eye.		
-			

Optic	The nerve that takes impulses	
nerve	from the retina to the brain.	
	One of three colours that are	
Primary	detected by the cone cells in our	
colour	eyes. The primary colours are	
	red, green and blue.	
	A colour made when two	
Secondary	primary colours mix.	
colour	The secondary colours are	
	magenta, cyan and yellow.	

	5. Colour			
White	Normal daylight, or the light			
light	from light bulbs, is white light.			
	The number of vibrations (or			
	the number of waves)			
Frequency	per second. Different			
	frequencies of light have			
	different colours.			
Coostrum	The seven colours that make up			
Spectrum	white light.			
	The separating of the colours in			
	light, for example when white			
	light passes through a prism.			
Dispersio				
n				
	Red Orange			
	Yellow Green Blue			
	White Light Glass Prism			
Duione	A block of clear, colourless glass			
Prism	or plastic. Usually triangular.			
Filter	Something that only lets certain			
	colours through and absorbs the			
(physics)	rest.			

8K - Energy Transfers

1. Temperature Changes		
Temperature	How hot or cold an object is. Measured in degrees Celsius (°C)	
Internal / Thermal Energy	The energy stored in the movement of particles. <i>Measured in Joules (J)</i>	
Factors Affecting Amount of Internal Energy Stored	temperaturematerialmass	
Energy Transfer	Always from a hotter object to a cooler one.	
Evaporation	When a liquid turns into a gas. A way of transferring energy.	
Cooling by Evaporation	The fastest moving particles escape a liquid to form a gas. The particles left are storing less energy so the temperature of the remaining liquid is lower.	

2. Transferring Energy		
	Energy can be transferred by	
Transferring	heating via evaporation,	
Energy	conduction, convection and	
	radiation	

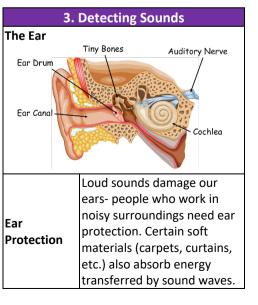
Energy	conduction, convection and
	radiation.
	A way of transferring Energy
Radiation	by heating through waves (it
	does not need a medium).

Emitting	All things give out (emit)	
Radiation	infrared radiation, the hotter	
Raulation	it is the more it emits.	
	Instruments that measure	
Thermalinfrared radiation andImagesconvert into maps of		
	When a solid is heated the	
	particles vibrate more and	
Conduction	these vibrations are passed	
	through the solid transferring	
	energy.	
Thermal	Energy is transferred easily	
Conductors	through them- metals.	
Thomas	Energy is not transferred	
Thermal	through them easily- wood /	
Insulators	plastic.	
	In fluids (liquids and gases)	
	when part of it is heated it	
.	become less dense and rises.	
Convection	Cooler fluid moves in to take	
	its place and a convection	
	current forms.	
Convection	Diagram	
	Cools down at the surface/top by transferring heat to surroundings	
Cool	Warm	
air/water sinks	air/water rises	
because it becomes	because it expands	
denser	and becomes	
	less dense	
	Warmed up again	
3.	Controlling Transfers	
	Houses are kept warm by	
Cold	burning fuel for heating and	
Climates	imates insulating houses to keep	
	warmth inside.	

warnit Good Brick, wood, carpet, feathers, Insulators wool. A very poor conductor because Air the particles are far apart

	Houses are kept cool by	Efficiency Forn	nula
Hot	painting them white (light and		
Climates	shiny surfaces reflect infrared	efficiency = $\frac{us}{t}$	otale
	radiation).		otal c
Solar	Painted black because dark	E D	ayin
Panels	colours absorb and emit	5. P	1
i uncis	infrared radiation well.		The
	Designed to reduce energy	Kilowatt-hour	tran
	transfers and keep contents	(kWh)	appl
	hot:		Used
	Plastic stopper to stop	Francis Has Fai	to m
	convection (and it is an	Energy Use For	
Vacuum	insulator).	energy use	= ро
Flask	 Glass walls with silver 	(kWh)	
	coating reflect radiation		1
	back in.		Not
	Vacuum between walls so	Saving Money	will s
	no conduction or convection	on Electricity	hous
	can occur.	/ Gas Bills	effic
	P		with
4.	Power and Efficiency		How
	The amount of energy	Payback Time	save
Power	transferred by an appliance		effic
	per second.	Payback Time	
	The units for measuring	Formula	payk
Watts (W)	power.		
	1000W = 1kW (kilowatt)		
Power	Tell us how much energy an		
Ratings	appliance transfers.		
	The amount of useful energy		
Efficiency	transferred by a device		
Lincicity	compared with the amount		
	of energy supplied to it.		
Sankey	A diagram that represents		
Diagram	energy transfers.		
Sankey Dia	gram Example		
40 J supplied each second by electricity	4 J transferred by light 36 J transferred by heating		

efficiency = $\frac{\text{useful energy transferred}}{\text{total energy supplied}} \times 100\%$		
5. P	aying for Energy	
Kilowatt-hour (kWh)	The amount of energy transferred in 1 hour by an appliance. Used by energy companies to measure energy use.	
Energy Use Formula		
energy use = power rating × time (kWh) (kW) (hours)		
Saving Money on Electricity / Gas Bills	Not using as much energy will save money. Insulating houses and using more efficient appliances will help with this.	
Payback Time	How long it will take you to save the money that an efficiency measure costs.	
Payback Time payback time = $\frac{\text{cost of change}}{\text{saving per year}}$		



8L - Sound 1. Making Sounds Sounds are made by

Making	Sounds are made by	
Sounds	something vibrating.	
Intensity	How loud or soft a sound is-	
	its volume.	
Pitch	How high or low a sound is.	
	The number of vibrations	
Frequency	each second.	
Frequency	The higher the frequency the	
	higher the pitch.	
11 (11)	The units for measuring	
Hertz (Hz)	frequency.	
	The size of vibrations.	
Amplitude	The bigger the amplitude the	
	louder the note.	
Humans	Two flaps (vocal folds) across	
Making	the windpipe vibrate when	
Sounds	air moves across them.	
Grasshoppers	Male grasshoppers chirp by	
Making	rubbing one leg against a	
Sounds	wing.	
Gorillas	Male gorillas thump their	
Making	chests or thump the ground	
Sounds	to threaten other males.	

2. Moving Sounds Sounds can only travel Moving through a medium (a solid, Sounds liquid or gas). A completely empty space. Vacuum Sound cannot travel through. Tiny pieces of matter that Particles make up everything. Sound Air particles vibrate and Moving cause nearby particles to **Through the** vibrate so the vibrations Air spread through the air.

Sound Wave	Formed by the moving
	vibrations.
	The air particles are pushed
Pressure	together in some place (high
Wave	pressure) and spread out in
	other places
Sound Wave	The number of waves passing
Frequency	a point per second.
Sound Wave	The distance moved by air
Amplitude	particles as the sound wave
Amplitude	passes.
	Energy is transferred from
Energy	one place to another by
Lifergy	sound waves. They do not
	transfer particles.
Speed of	Sound travels faster in solids
Sound	because the particles are
Sound	close together.
	As you move away from a
Moving	source of sound, the energy
Moving Away from A	carried has spread out
Away from A Source	further so there is less energy
Source	for your ear to detect- it
	sounds quieter.

	 sound waves enter the ear canal. the eardrum (a thin 	Echoloca
How Ears	membrane) vibrates. 3. vibrations pass to the tiny bones which amplify the vibrations.	Sonar
Detect	vibrations pass to the	
Sounds	liquid inside the cochlea.	
	 tiny hairs inside the cochlea detect vibrations and create electrical 	Longitudi Waves
	signals (impulses). 6. impulses travel along the auditory nerve to the	Transvers Waves
	brain.	Transvers
How Microphones Detect Sounds	Sounds make a thin sheet of materials (a diaphragm) vibrate and electrical circuits convert these vibrations into electrical currents.	amplitude
	The units for measuring the	Direction of
Decibels (dB)	loudness of a sound.	
Auditory	The range of frequencies an organism can hear	Superpos
Range	20Hz – 20000Hz in humans	
Infrasound	Sounds below 20Hz	
Ultrasound	Sounds above 20000Hz	Superpos
		Diagram

4. Using Sound		
Using Sound	Sound is often used for	
	communication.	
Transmitted	Energy from sound waves	
	goes through some materials.	
Reflected	Energy from sound waves	
	bounces off some materials.	
Using High Frequency Waves	 Treat injuries 	
	 Clean delicate objects by 	
	making tiny bubbles that	
	loosen dirt when the burst.	
Echo	A reflected sound	

Echolocation	Used by animals (bats, dolphins, etc.) to find their way around/find prey.		
Sonar	Pulse of ultrasound is given off and reflected by the sea bed. It is then detected by sonar equipment to find the depth.		
5. (Comparing Waves		
Longitudinal Waves	Particles vibrate in same direction wave is moving.		
Transverse Waves	Particles vibrate at right angles to direction wave is moving.		
Transverse Wave Diagram			
Superpositior	As waves pass through each other their effects add up or cancel out.		
Superpositior Diagram			

8M - Earth and Space

1. Ga	thering the Evidence	
Astronomer	A scientist that studies space.	
Early	Could only use their eyes to	
Astronomers	make observations.	
	Egyptian astronomer (90- 168)	
Ptolemy	Proposed a model with the	
· · · · · · · · · · · · · · · · · · ·	Earth in the centre and the	
	Moon, Sun and planets	
	orbiting the Earth.	
	Polish astronomer (1473-	
	1543)	
Nicolaus	Suggested the Earth and	
Copernicus	other planets move in circles	
	around (orbit) the Sun.	
	It was not accepted straight	
Reaction to	away. However observation	
Copernicus'	made by Galileo using one of	
Model	the first telescopes provided	
	more evidence to support it.	
	German astronomer (1571-	
	1630)	
	Proposed the model used	
Johannes Konlor	today. The Sun is at the	
Kepler	centre with the planets	
	moving around in elliptical	
	orbits. Moons orbit planets.	

Neptune The Moon appears different shapes at different times due to its position relative to the Phases of Earth and Sun. the Moon Allowed scientists to investigate space more by Spacecraft collecting samples and taking readings on other planets. 2. Seasons Longer days than nights, Sun Summer high in the sky. Longer nights than days, Sun Winter not very high in the sky. Cause of Due to the tilt of the Earth's axis by 23.5°. Seasons When the northern Causing hemisphere is tilted towards Summer the Sun it is summer in the UK. When the northern Causing hemisphere is tilted away from Winter the Sun it is winter in the UK. Causing Seasons Diagram

The Model of the Solar System

	Descuse the Currishishish suits		
Summer	Because the Sun is higher in	Weight	The force of gravity pulling
	the sky in summer the heat is		on you.
Sun	more concentrated, making it		Measured in Newtons (N)
	feel warmer		The space around the Earth
	3. Magnetic Earth	Field	where gravity attracts things.
Compass		Gravitational	At the surface of the Earth it
Compass	A magnet that points north.	Field	is about 10 newtons per
North-	The end of a bar magnet that	Strength (g)	kilogram (N/kg).
Seeking	points north- shortened to	Weight	Weight = mass x g
pole	north pole.	Formula	Weight – mass x g
South-	The end of a bar magnet that	Gravity and	The force of gravity keeps the
Seeking	points south- shortened to	Orbits	Earth in its orbit of the Sun.
pole	south pole.	Satellite	Anything that orbits a planet.
Attract	When two magnets are pulled	Natural	Moons are examples of
	together. Opposite poles will	Satellite	natural satellites.
	attract each other.		Can be put into orbit around
Repel	When two magnets are pushed	Artificial	Earth for photographing /
	apart. The same poles will	Satellite	transmitting TV programs etc
	repel each other.		
Magnetic Field	The area around a magnet	5. Bey	ond the Solar System
	where it has an effect. Can be	Constellation	Pattern of stars
	found using iron filings or a	Stars	Huge balls of gas that give
	small compass.		out large amounts of energy.
			The Sun is a star.
Magnetic			Appear less bright than the
Field	s N	Stars At	Sun because they are further
Diagram	Mar Din	Night	away.
2.09.000		Galaxies	Large groups of stars.
		Milky Way	The galaxy our Sun is in.
Magnetic	Strongest closest to each pole,	ining truy	Made up by all of the millions
Field	the field gets weaker as you get	Universe	of galaxies.
Strength	further from the magnet.		Measurement of distance-
Magnetic	The direction of a magnetic		the distance travelled by light
Field	field is always from the north	Light Year	
Direction	pole towards the south pole.		in 1 year.
	4. Gravity in Space		Approximately ten million
	Force exerted by all objects	Duraning	million kilometres.
Gravity	with mass trying to pull other	Proxima	Nearest star to the Sun,
Gravity		Centauri	about 4.22 light years away.
	objects towards it.		
Diamon M	The bigger the mass of an		
Bigger Mas			
	it exerts.		